

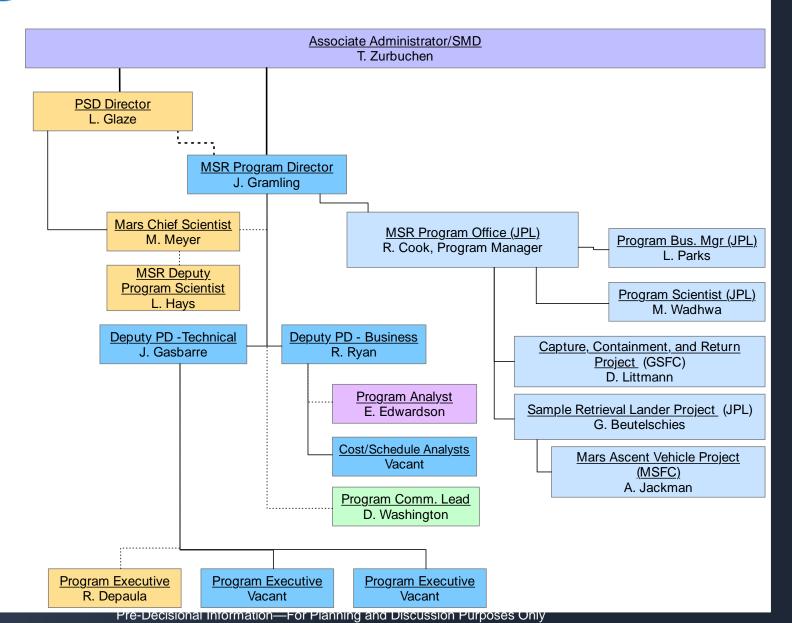
MSR Architecture Overview

Phase A Status

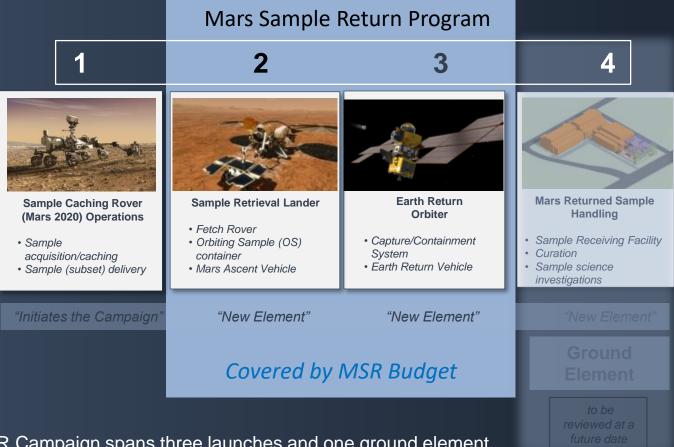
- MSR entered Phase A in December following Independent Review Board and Standing Review Board Review of mission concept and technology plans
- Program has been staffing up
 - Have benefited from staff transitioning from M2020
- Partnership with ESA established
 - Second Joint Steering Board planned for June 17th
 - Review of Proposal for Sample Transfer Arm
- Review Status
 - ESA Earth Return Orbiter (ERO) PDR 4/15
 - ESA Sample Fetch Rover (SFR) SRR 4/29
 - Capture, Containment, and Return System (CCRS) SRR 4/22
- Focusing on developing and refining architecture
 - Ensure alignment with Class A mission requirements
 - Mission Timeline (LRD and Sample Return date)
 - One vs Two landers

Phase A Status, cont'd

- Agency Delta Acquisition Strategy Meeting, 5/13
 - Consistent with IRB Recommendations, MAV, SRL Cruise Stage, and EEV will be system procurements
- Near Term Strategic Procurements:
 - SRL/EEV Thermal Protection System (TPS) material, Contractor: FMI
 - MAV Solid Rocket Motors, Contractor: Northrup Grumman
 - Aeroshell, Contractor: Lockheed Martin
 - EEV
 - MAV
 - SRL Cruise Stage


Staffing Updates

- Richard Cook named MSR Program Manager (JPL)
- Joe Gasbarre selected as permanent Deputy Program Director/Technical
- Dewayne Washington joins team as HQ Communications Lead
- Mini Wadhwa joins team as Program Scientist (JPL)
- Guy Beutelschies named SRL Project Manager (JPL)
- Dave Littmann named CCRS Project Manager (GSFC)
- Larisa Parks joins team as Program Business Manager (JPL)
- Randy Blue joins team as Program Mission Assurance Manager (JPL)



Mars Sample Return

MSR Campaign

- The MSR Campaign spans three launches and one ground element
- The MSR Program manages development and operations of elements 2 and 3 above and interfaces to elements 1 and 4; program concludes with recovery/containment of samples for transfer to SRF
- The MEP Program manages M2020 Phase E operations & will be the home of the future SRF Project

MSR Budget Status

President's FY22 Budget request

Budget Authority (in \$ millions)	Op Plan FY 2020	Enacted FY 2021	Request FY 2022		FY 2024	FY 2025	FY 2026
Total Budget	0.0	246.3	653.2	772.3	800.0	700.0	600.0

- We are pleased that the President's FY22 Budget request funds us at levels consistent with the recent IRB recommendations and the presentations made to the Planetary Science and Astrobiology Decadal Survey
- Program Cost Commitment established at KDP-C, following completion
 of Phase B

MSR Cost Control

- Cost Control and reduction measures
 - Partnership with ESA reduces cost & risk to both partners
 - Increased use of independent review starting in Pre-Phase A
 - Two independent cost and schedule assessments in Pre-Phase A
 - Standing Review Board (SRB) for the Mission Concept Review prior to entry into Phase A
 - Deputy Director-Business position created at HQ to ensure rigorous cost and schedule management processes are established for the program
 - MSR will be the first SMD program to perform a Joint cost and schedule confidence exercise for KDP-B
 - MSR will begin Earned Value in Phase B
- Descopes
 - The only cost/complexity reducing descope identified has been the draft requirement for a dedicated Atmospheric Sample in the OS, which is being studied in Phase A

Science Involvement in Sample Return

- MSR Program Staff
 - Dr. Meyer, Lead Mars Scientist (HQ)
 - Dr. Hays, Deputy Program Scientist (HQ)
 - Dr. Gerhard Kminek (ESA Chief Scientist)
 - Dr. Wadhwa, JPL Program Scientist
 - Scientific leadership in the execution of MSR Program activities
 - Responsible for the scientific integrity and overall scientific success of the MSR Campaign
 - Provide a science voice in MSR Program decision making
- Key stakeholders/authors of Level 1 Requirements and Mission Success Criteria
- Agency Standing Review Board scientists for MSR Program
 - Chaired by Dr. Zuber
 - Members include Drs. Grotzinger and Lunine
- Community inputs via working groups (typically with competed membership)
 - Established by the Mars lead scientists at NASA HQ and ESA for targeted activities (such as the Caching Strategy Steering Committee & MSPG2)
 - MSR Science Plan being developed jointly with ESA

Summary

- Perseverance is progressing towards initiation of sampling science operations
- Organizational responsibilities and Make/Buy decisions have been aligned consistent with recommendations by the IRB
- Team continues to mature architecture in Phase A
 - Close trades
 - Demonstrate viability on technology and engineering developments
 - Refine cost and schedule estimates with institutional commitments
 - Continue refinement of mission design and planning
- The President's FY'22 budget request funds the program consistent with IRB recommendations
- The program has benefited from addition of experienced staff from M2020 and other missions

Acronyms

- CM: Containment Module
- CCM: Capture and Containment Module
- CCRS: Capture, Containment and Return System
- CONOPS: Concept of Operations
- CP: Chemical Propulsion
- CS: Cruise Stage
- DOF: Degree of Freedom
- EE: End Effector
- EES: Earth Entry System (includes OS)
- EEV: Earth Entry Vehicle
- EP: Electric Propulsion
- ERO: Earth Return Orbiter
- ERM: Earth Return Module
- GNC: Guidance, Navigation and Control
- HEEET: Heatshield for Extreme Entry Environments Technology
- IRD: Interface Requirements Document
- IDRA: Interface Definition and Requirements Agreement
- ITT: Invitation to Tender
- JMIP: Joint Management and Implementation Plan
- LMO: Low Mars Orbit
- LRD: Launch Readiness Date
- LV: Launch Vehicle
- MAPS: Mars Ascent Propulsion System
- MAS: Mars Ascent System
- MAV: Mars Ascent Vehicle
- MPA: MAV Payload Assembly
- MEL: Mass Equipment List

- MEP: Mars Exploration Program
- MMOD: MicroMeteoroid and Orbital Debris
- MRSH: Mars Returned Sample Handling
- MSR: Mars Sample Return
- OS: Orbital Sample
- PICA: Phenolic Infused Carbon Ablator
- PLV: Propulsion Landed Vehicle
- PP: Planetary Protection
- PPO: Planetary Protection Officer
- QPM: Quarterly Progress Meeting
- RSTA: Returned Sample Tube Assembly
- RTA: Robotic Transfer Arm
- SEP: Solar Electric propulsion
- SFR: Sample Fetch Rover
- SRL: Sample Retrieval Lander
- SRF: Sample Receiving Facility
- STA: Sample Transfer Arm
- STS: Sample Transfer System
- SOI: Statement of Intent
- TAA: Technology Assistance Agreement
- TGO: Trace Gas Orbiter
- TM: Transfer Module
- TPS: Thermal Protection System
- TVC: Thrust Vector Control
- TRN: Terrain-Relative Navigation
- VECTOR: Vertical Ejection, Controlled Tip-off Rate launch mechanism
- UTTR: Utah Test and Training Range

